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Abstract—
Content Delivery Network (CDN) plays an important role in

today’s web services. More and more content providers use
CDNs to lower the server overhead, reduce client perceived la-
tency and decrease network traffic. Many research papers have
been published in recent years addressing CDN system perfor-
mance issues. However, most of them are concentrated on server
placement policy, content distribution mechanism and request
routing algorithm. In this paper, we propose a new CDN archi-
tecture to improve system performance by grouping the content
servers which are topologically close into server clusters and
exploiting the benefits of server cooperation. In our approach,
when a server receives a request and can not fulfill this request,
it will forward the request to other nearby servers in this clus-
ter. If there s a cache hit, the data can be fetched immediately.
Only in case none of the servers can satisfy this request, the data
will be fetched from the original server. Furthermore, with the
server coordination, system workload can be well balanced on
several severs. We conduct extensive simulations and the results
show that our solution achieves significant improvement over
the conventional CDN architecture.

I. INTRODUCTION

With the fascinating evolution in the past decade, Internet
achieves great success and becomes a network containing hun-
dreds of millions of users around the world. A key challenge in
Internet service is how to deliver the information to the clients
fast and efficiently. Numerous research papers addressed this
issue. Web Caching [1], [2], [3], [4] and Content Delivery Net-
work (CDN) [5], [6], [7] are two major mechanisms used in
today’s web services. By caching and replicating the web con-
tents closer to the clients, Web Caching and CDN systems can
greatly reduce client perceived latency and decrease network
traffic. They use different approaches. Web Caching technique
uses a reactive model, the data is cached on proxy servers only
when it is required by a client. CDN system takes a more proac-
tive policy: the data is fetched from the original server to the
content servers which are topologically closer to the clients be-
fore any requests occur.

In Web Caching approach, the proxy servers belong to dif-
ferent ISPs, companies or universities. Server cooperation is
very difficult. While in CDN model, a service provider owns
all the content servers and they are under the unified administra-
tion. Each CDN has a central control facility which maintains
all the information, such as server locations and cached files on
the content servers within the CDN. Content delivery service
achieved great successes in recent years, a large portion of Inter-
net traffic are now generated by content service providers such

as Akamai [8], Digital Island [9] and Mirror Image [10]. As
more and more CDN service providers appear, the Internet En-
gineering Task Force (IETF) begin to make protocols and stan-
dards for the content delivery network [11] as well as content
delivery internetworking [5], [6] which regulate the manipula-
tion and cooperation within a CDN or among different CDN
systems. However, content server coordination within a single
CDN has not been fully considered.

In this paper, we use server clusters to exploit the benefits
of content server cooperation within a single CDN network. In
our approach, we group topologically adjacent content servers
together to create a server cluster. The servers within a cluster
have equal responsibility and provide service to all the clients.
The client requests are fulfilled by the server coordination. Our
approach is superior to the previous approaches. A server clus-
ter can cache more data than using each server separately, a
higher cache hit rate can be achieved. The global network traf-
fic is reduced and the user perceived latency is decreased. Since
new value-added web contents such as multimedia contents have
high storage requirement, this is a big advantage.

The rest of the paper is organized as follows. First, we dis-
cuss the CDN architecture and the existing problems in Sec-
tion II. New CDN models are described in Section III. We
present our simulation environment and analyze experimental
results in Section IV and V. The related work is discussed in
Section VI and we summarize our contributions and describe
the future work in Section VII.

II. CONTENT DELIVERY NETWORK

A. CDN Overview
Content delivery network offers promising benefits on web

services. A CDN distributes the contents from the original web
servers to its content servers, clients can fetch the contents from
a topologically close content server instead of the remote orig-
inal servers. The basic CDN components include content dis-
tribution system, request routing system and accounting sys-
tem. The content distribution system is responsible for moving
contents to replica servers, it interacts with the request routing
system through feedback to assist replication decision. The re-
quest routing routes client requests to the optimal content server
instead of the original server and the accounting system is in
charge of billing and accounting information. A simple CDN
service model is illustrated in Figure 1. More details of CDN
architecture can be found in [11], [12].

Since CDN system can significantly reduce user perceived
latencies and decrease Internet traffic, more and more content
providers begin to use CDN service. The rapid growing re-
quirement stimulates more CDN companies to appear and the
scale of CDN system becomes larger and larger. For example,
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Akamai has more than 15,000 content servers geographically
distributed all around the world. Thus it provides a chance for
server cooperation. In current CDN systems, the service model
is client-server oriented, before a client request can be fulfilled
by a content server, a central facility is responsible for choos-
ing the designated server for that request. Since all the content
servers in a CDN are belonging to the same service provider, the
server placement policy, content distribution strategy and server
selection decision are well controlled. System can easily deter-
mine an optimal server.

B. CDN Problems
To achieve high performance, a CDN system must be well

designed and implemented. Current research concentrates on
problems such as server placement strategy, request routing
algorithm and the cooperation among different CDN service
providers. Few efforts have been done on content server co-
ordination within a single CDN. In a CDN, a content server has
no knowledge about the data stored on its neighboring servers.
If it can not satisfy a client request, it has to forward the re-
quest to the original server even in case the required data is
available in its neighboring servers. Moreover, if a server is
overloaded, its neighboring servers are not aware of that and
can not help to reduce its workload even their workload are very
low. Another serious issue is the cache space limitation, since
more and more content providers use CDN service, the storage
requirement increases dramatically, new services such as high-
quality videos, video on demand, real-time video conferences
and real time stock information generate even higher storage re-
quirement and exacerbate the problem, thus the cache hit rate
on these CDN servers keeps decreasing. We can expect in the
near future, this issue will become more and more severe. New
solutions are needed.

III. SYSTEM DESIGN

In this section, we describe the detailed design of our CDN
architecture. Our system generates a cooperative structure to
provide better CDN service. It can achieve higher cache hit rates
and better server load balancing.

A. Motivation
The principle in our solution is to utilize the topology in-

formation. We group topologically close servers together to
provide better service. It is motivated by the following fac-
tors: First, the number of content servers in CDNs (Akamai
has more than 15,000 servers) is growing. There’s opportuni-
ties to apply server cooperation strategy. Second, since the con-
tent servers are located on the edge of networks and they have

high bandwidth connections, the communication latencies be-
tween servers which are located in neighboring networks are
very small. For example, we choose a machine in University of
Cincinnati as the base server and measure its average round trip
latency with machines in Ohio State University, Purdue Univer-
sity and Indiana University, the results are 7.12, 9.17 and 9.86
ms respectively. From the client point of view, this difference
is small and can be neglected. We can group them together to
provide services to the clients in both Cincinnati and Columbus.
A client does not have to figure out the requests are satisfied
by a server in Cincinnati or Columbus. Third, with the server
cooperation, we can achieve better load balancing, in case a
server is overloaded, the neighboring servers can take over par-
tial workload. The fourth and most important reason is, the stor-
age requirement in CDN increases sharply. By grouping several
servers together, we can achieve larger storage space than using
them separately and a higher hit rate can be expected.

Utilizing topological information to boost large-scale dis-
tributed system performance is a hot research topic recently. In
[13], [14], the authors improved DHT based P2P system rout-
ing performance by using this mechanism. In our approach, we
take advantage of network topology information together with
P2P techniques to improve CDN system performance.

B. Content Server Cluster
A server cluster is a group of content servers which are topo-

logically close to each other. It plays the most important role in
our system. Unlike P2P systems, grouping topologically close
servers into a cluster is not difficult in CDN because all the
servers are within the same administration domain. System ad-
ministrator has the accurate location information about all the
servers. For example, we can group servers located in Cincinnati
and Columbus in one cluster, servers in San Jose and San Fran-
cisco in another cluster. A more accurate grouping mechanism
is based on network latency measurement result. The basic idea
is to aggregate the servers with the minimal round-trip latency
into the same cluster. The server cluster creation procedure is
done as follows:

First, we choose one content server which does not belong
to any clusters as the start point. This server measures the link
latencies to the other servers which are not within any clusters.
Then it chooses the server with the smallest latency and adds
that server into the current cluster. After the new server is added,
the cluster has two members.

Second, the newly added server measures its network laten-
cies with the remaining servers, and it chooses the server which
has the smallest average latency to both itself and the first server
to be the next one added into the cluster. This procedure contin-
ues until the certain number of servers is included.

The number of servers in a cluster is dynamic and can be
changed according to network topology. In our current design,
to simplify the management, the maximum number of servers in
a cluster is set to 10. To avoid grouping two topologically sepa-
rated servers together, we set a latency threshold, if all the cur-
rent latency measurement results are higher than the threshold,
even in case there’s only one server in the cluster, we stop the
cluster creation procedure and leave it alone. With this mecha-
nism, we guarantee only the topologically close servers are ag-
gregated. After one cluster is created, we choose another server
from the remaining ones and begin a new procedure. The cluster
creation procedure continues until all the servers are aggregated.

The cluster creation procedure only needs to be performed
once for each server at the very beginning of CDN construction.
After the construction finishes, the clusters will keep stable since
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Fig. 2. Overview of a two-layer CDN system with server clusters

servers’ locations seldom change. If new servers are added, the
same algorithm can be used.

In a cluster, the functionality and responsibility of each server
is equal and these servers cooperate together to provide the ser-
vice. We call the servers in a cluster as peer servers. In our de-
sign, we use two-layer architecture. The higher layer includes
all the servers. The lower layer is server cluster. A simple ex-
ample is shown in Figure 2.

C. Cache Structure in Server Cluster
In our system, we keep the original design of server place-

ment, content distribution and request routing mechanisms pro-
vided by the current CDN systems. Each client has a designated
content server and it sends all its requests to this server. How-
ever, if the designated server does not have the requested data,
it will check other servers in this cluster to fulfill the request be-
fore contacting the original server. Four schemes are proposed:
Fully-Administrated Cluster (FAC), Fully-Peer Cluster (FPC),
Partial-Administrated Cluster (PAC) and Partial-Peer Cluster
(PPC). These service models differ from each other mainly in
the storage utilization strategy and content management mecha-
nism. The storage space on each server is divided into two types:
individual cache space (ICS) and public cache space (PCS). ICS
stores the frequently accessed data, each time when a request is
fulfilled by this server or another server in this cluster, the con-
tent in ICS will be modified. It is only used by the clients whose
designated server is the current server. For FAC and FPC mod-
els, no ICS caches created. PCS cache can be used by all the
clients within the same cluster. The data in an ICS can be over-
lapped with other ICS or PCS in this cluster. The contents in
PCS on servers will not be duplicated within the cluster. Each
server has an object location hash table (OLHT) to maintain the
content location information. Each time when a new request
comes, system looks up this table for the requested data.

Each cached object has an objectid generated by a collision
free hash function (such as SHA-1 algorithm), and each server is
also given a serverid generated with the same algorithm. These
ids are used in FPC and PPC models. In these two models, if
the designated server can not fulfill the client’s request, the ob-
jectid of the requested data is used as a search key. Each server
also maintains a Server Location Table (SLT) for its request for-
warding decision. The numerical space of objectid and serverid
is equally divided into several zones according to the number
of servers in a cluster, each server is responsible for one zone.
When the designated server can not fulfill the request, it will
forward the request to the server who is in charge of the cor-
responding zone that the current objectid belongs to. The data
structure of OLHT table is illustrated in Figure 3. An entry in
OLHT includes an object name (such as 1.jpg), objectid, hash

value, its location information and in which table it is stored. A
sample SLT table with four servers in a cluster (numerical space
is 1024) is also shown in Figure 3. The usage of these tables
will be discussed later.

Object Location Hash Table

entry entry

entry

Server Location Table

entry

entry

entry2

1

0

hash value
N−1

Entry Structure:

object name   objectid   hash value   location: serverid   Cache Place

serverid      zone

122           0 − 256

347           256 − 511

399           512 − 767

989           768 − 1023

Fig. 3. OLHT and SLT table structure

D. Cluster Service Models
With the introduction of server clusters, our CDN architec-

ture aims to provide better CDN service under the high request
rates and stringent storage requirement.

1) Fully-Administrated Cluster (FAC) Model: In this
model, each server only has a PCS cache and an OLHT table.
The contents in all PCSs within the cluster are not overlapped,
thus we obtain large space in which can store more data than a
single server. In its OLHT table, each server maintains the ob-
ject location information in all the servers’ PCS caches in this
cluster. In this model, a client request is satisfied with the fol-
lowing steps:

1. A client sends the data request to the CDN request routing
mechanism as in normal CDN system.

2. The request routing mechanism chooses the designated
content server for this client and forwards the request to that
server.

The first two steps only need to be done at the very beginning
when the client does not know its designated server. In case the
client has already been assigned a content server, it can send the
request to the server directly.

3. The designated server checks its OLHT table. Different
scenarios could happen:

a). If the requested data is in its own PCS cache, the server
sends the data back to the client. This is the same as the original
CDN service strategy.

b). In case it does not have the requested data in its PCS
cache and its OLHT table shows another server in this cluster
has the data, instead of fetching the data from the original server,
the designated server forwards the request to the alternate server.
The alternate server then fulfills this request by sending the data
back to the client directly.

c). In case no server has the data, the designated server
fetches the data from the original server and the client must en-
dure the long network latency. The data will be cached on the
designated server.
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4. The client request is satisfied.
In FAC model, a client request can be fulfilled from a server’s

PCS cache or the original server. Suppose a cluster has n servers
and each server has k GB space, then this cluster has nk GB
cache space. Thus it can greatly improve the hit rate. Although
fetching data from other servers is slightly slower than the des-
ignated server, it is still much smaller than fetching data from
the original server. A simple illustration of FAC model is shown
in Figure 4.

An obvious drawback in FAC model is the high maintenance
overheads. Each time when data is added or removed from a
server’s PCS cache, the server must notify all the other servers
to modify their OLHT tables accordingly. This is unacceptable
in real world. We can define a time interval (T), the location
information update only occurs once in each interval, to reduce
the maintenance overhead. However, in this circumstance, the
OLHT tables can not reflect the up-to-date object location in-
formation. In some cases, the designated server’s OLHT table
shows an object is cached in another server’s PCS cache which
has already been deleted. This inconsistency problem will hurt
system performance. Another problem in FAC model is it can
not achieve good load balancing, since each object only has one
copy in a cluster, all the requests for a hot object goes to the
same server which stores that object.

2) Fully-Peer Cluster (FPC) Model: In this model,
servers in a cluster do not need to store all the object loca-
tion information in this cluster. Each server has a SLT table
to record all the servers’ location information and their corre-
sponding zones on the numerical space. Each server also has a
PCS cache and an OLHT table to record the object information
in its own PCS cache. However, unlike in FAC model where
data can be stored on any server’s PCS cache, here, the data can
only be stored in the server which the data’s objectid is mapped
within this server’s corresponding zone.

In this model, to serve a client request, the first two steps are
the same as FAC model. In the third step, the designated server
checks the objectid of the requested data. If the objectid maps to
its responsible zone, the server searches the object in its OLHT
table using the objectid as the key. If it finds the data in its PCS
cache, it sends the data back to the client. If the data does not
fall into its zone, the server checks its SLT table and forwards
the request to an alternate server which is responsible for that
particular zone. If the alternate server finds the data in its PCS
cache, it will send the data back to the client. In case of not
found, the alternate server will satisfy the request by fetching
the data from the remote original server and it will keep a copy
of the data in its PCS cache for future usage.

In FPC model, we relieve the high maintenance overhead
problem in FAC model since servers do not need to maintain
object information in other servers, but it increases the first time
miss rate since only a small number of requests can be fulfilled
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by its designated server and most requests must be satisfied by
an alternate server. As we mentioned early, the cache hit rate can
be increased and system performance can be improved because
the latency difference between fetching data from the designated
server or an alternate server is very small. A simple explanation
of FPC model is shown in Figure 5.

In FPC model, we create a fixed mapping between an object
and the server storing it. Since we use the collision free func-
tion to generate the objectids, we can expect nearly the same
amount of files or even same amount of bytes will be cached on
each server. Although we have a big PCS cache and reduce the
overhead of the FAC, this model still suffers from the hotspot
problem, the requests for a hot data can only be satisfied by the
specific content server.

3) Partial-Administrated Cluster (PAC) Model: To
solve the hotspot problem in the above service models, we in-
troduce PAC model. In this model, each server has an ICS cache
as well as a PCS cache. The content in ICS cache could be over-
lapped with any other ICS caches or PCS caches in any other
servers in the cluster. It is used to store the frequently accessed
data. As in FAC model, an OLHT table records all the object
location information in PCS caches in this cluster.

When a client request comes, the designated server tries to
satisfy the request from its ICS and PCS caches first. In case of
data not found, it checks its OLHT table and sends the request
to the alternate server which might have the data. In case no
server’s PCS cache has the data stored, the designated server
fetches the data from the remote original server. PAC model is
nearly the same as FAC model except it has an ICS cache to
keep hot data. Also, in PAC model, if a client request is satisfied
by an alternate server, the designated server will keep acopy of
that data in its own ICS cache as well. Figure 6 shows PAC
service model. Here, the data can be fetched from any server’s
PCS cache, the designated server’s ICS cache and the original
server.

Although the PAC model can solve the hotspot problem, each
server needs to keep all object location information in its OLHT
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table as FAC model, it still suffers from the high maintenance
overhead problem.

4) Partial-Peer Cluster (PPC) Model: To relieve both
hotspot and high maintenance overhead problems, we introduce
the PPC service model. In this model, we use the same strategy
as FPC model. The only difference is an ICS cache is created
on each server to cache the hot data. As shown in Figure 7, in
step 4, the client request can be satisfied by any server’s ICS or
PCS caches. It uses ICS cache to solve the hotspot problem and
achieve load balancing. It also uses P2P architecture to avoid
high maintenance overhead. It has better performance than all
the other three models.

E. Data Replacement Strategy
Since clients in a server cluster are served by all the content

servers in this cluster, the data replacement policies in ICS and
PCS are important for the system to achieve good performance.
In current design, we use LRU algorithm for all the models. In
FAC model, if a requested object is not in PCS caches and must
be fetched from the original server, the designated server will
add the data in its PCS cache, in case no enough space left, it
will check if any other server’s PCS cache has enough space and
store the data in that server’s PCS cache. If it cannot find such a
server, it will evict some data from its own PCS cache according
to the LRU usage. In PAC model, the replacement algorithm is
the same except it has one more operation, the designated server
will place the data in its ICS cache as well, in case no space left
in ICS cache, the server also uses the LRU replacement algo-
rithm to select a victim data. After the contents in ICS and PCS
caches changed, the corresponding tables are modified to reflect
the modification.

In FPC model, the data can only be cached on the server who
is in charge of the corresponding zone, it also uses LRU algo-
rithm to select victim data in case of cache full. The difference
between FPC and PPC models is, in PPC model, the data fetched
from the original server is also stored in the designated server’s
ICS cache using the same LRU replacement algorithm.

F. Server Cluster Maintenance
In our system, when a new content server is added, a serverid

is generated first and the related data structures are created ac-
cording to the different service models. Then it is added to a
server cluster. For FAC and PAC models, no data migration
is needed. For FPC and PPC models, data migration is nec-
essary. Assuming there are n servers in the cluster, the name
space is divided into n equal size zones. After the new server
joins, the number of servers is n+1 and the name space is re-
divided into n+1 zones. The content within the cluster need to
be redistributed according to the objectids. In case a server is
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removed, for PAC and PPC models, the same operation is nec-
essary. There’s no operation need to be done for FAC and PAC
models.

FPC and PPC models have more work to do in case of server
join/leave. However, in CDN system, server join/leave opera-
tions seldom happen. The server clusters are relatively stable
after it is created. No much maintenance work needs to be done.

IV. EXPERIMENTAL METHODOLOGY

We conduct trace-driven simulations to evaluate the perfor-
mance of the service models.

A. Workload Trace
Most CDN networks are commercial systems, thus it is dif-

ficult to get the real world CDN traces. We take the web proxy
logs obtained from the National Laboratory for Applied Net-
work Research (NLANR) as workload traces as the workload.
The trace data we use is collected from UC server between Feb
21st and Feb 24th, 2003. The total size of the individual files in
the trace is 21.8GB.

B. Simulation Environment
We compare proposed models with the standard CDN config-

uration. To simplify the simulation, unless specified, the number
of servers in proposed models is 4. Each client has a designated
CDN server. Client requests are first submitted to this server
before it can be satisfied by any other servers according to the
different strategies. Only in case none of the servers has the data,
the request will go to the original server. For the standard CDN
configuration, client requests will be sent to the original servers
if the designated server can not fulfill the requests. The cache
replacement policy used is LRU. We define the overhead of sat-
isfying a request from the designated server is 15ms. If the data
is served by another server in the cluster, we add another 5ms
communication latency, and set the overhead to 20ms. In case
of the data must be fetched from the original server, the over-
head is set to 100ms. To evaluate the effects of different cache
sizes, we vary the cache space on each server from 256MB to
2GB. It is reasonable because in the real world, the cache space
on each server is far smaller than the total amount of data which
the original servers provide. The size of ICS cache is set to 1/3
of the PCS cache. For all the service models, we assume each
server knows the accurate data location information.

V. PERFORMANCE EVALUATION

A. Average User Perceived Latency
The most important metric to measure CDN system perfor-

mance is the average user perceived latency. In the first exper-
iment, we compare the performance of proposed models with
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the standard CDN configuration using this metric. Figure 8
shows the comparison results. Clearly, in our service models,
with the server coordination, client requests have higher chance
to be satisfied by the designated server or an alternative server
than in standard CDN configuration, therefore all the four ser-
vice models can achieve a lower average user perceived latency
than the standard CDN system. With a cache size 256MB on
each server, the average latency reduction is between 14.67%
and 20.30%. This is because of the huge amount of overall data
(21.8GB). As the cache size on each server increases, our mod-
els can achieve higher performance improvement because more
space can be used to cache data within a server cluster. With
a 2GB cache on each server, the average latency reduction in-
crease to 29.14% and 36.91%.

Within four proposed service models, PAC has the lowest av-
erage latency because of the two features: First, it has an ICS
cache to cache the hottest data, it efficiently improve cache hit
rates on the designated server; Second, it has the unified space
management for PCS caches on all the servers, this can effi-
ciently avoid data duplication. Thus the system has the maxi-
mum size of cache to store data. PPC model also achieves good
performance, it is only a little worse than PAC model. FAC and
FPC models have worse performance that PAC and PPC models
because they do not have ICS caches. FAC model has slightly
better performance than FPC model because in FAC model, data
can be cached anywhere within the cluster, while in FPC model,
an object can only be stored on the server when its objectid
fallen into the corresponding zone. Thus, FAC has higher PCS
cache hit rate. We will analyze it in Section V-B. Although PAC
and PPC have the best performance, PAC model introduces sig-
nificant maintenance overhead. Thus, PPC model is the optimal
configuration.

B. Cache Hit Rate
We examine the cache hit rates in the second simulation. The

results are shown in Figure 9. We can generate two conclusions:
First, the server coordination can efficiently increase the overall
cache hit rate. The standard CDN system has the lowest cache
hit rate. All the four service models have much better perfor-
mance than it. Second, if measured by the metric: cache hit
rate, FAC model has the best performance. FPC model also has
very good performance which is slightly lower than FAC model.
Although both PAC and PPC models can achieve lower average
user perceived latencies, the cache hit rates in them are much
lower than in FAC and FPC models. A dispatch appears if we
compare with the results shown in Figure 8.

To figure out the reason, we divide the cache hits in PAC and
PPC models into two categories: ICS cache hits and PCS cache
hits. Table I shows the ICS and PCS cache hit rates in both
PAC and PPC models. Clearly, the latency and hit rate dispatch
comes from the usage of ICS cache. The latency of an ICS cache
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hit is much smaller than in PCS cache in most cases. Although
FAC and FPC models have higher PCS cache hit rates, they have
larger latency than PAC and PPC models. Thus, the introduction
of ICS cache is crucial, it can efficiently improve system overall
performance.

C. Load Balancing
To achieve good scalability, workload should be well dis-

tributed on all the servers. We evaluate load balancing property
for the proposed models. In this experiment, we use a four-
server configuration and assume each one contains one fourth
of all the cached contents. If each server can cache all the con-
tents, then a request definitely can be satisfied by its designated
server, no server load balance can be achieved, thus we did not
compare with the standard CDN design. The content is dis-
tributed evenly all across the four servers, in this experiment,
as a request comes, each server has the equal opportunity to be
selected as the designated server (we assume each designated
server has nearly equal client population). The total requests
number is truncated to 500000.

Figure 10 shows the measured results in PAC model. PAC
model has optimal server load balance property only in case the
client requests are uniformly distributed. For the real world web
trace and Zipf synthetic traces, some servers have much heavy
workloads than other servers. This is because of the cache orga-
nization in PAC model, the location of a hot object is fixed and
the requests can only be satisfied by the particular server. FAC
model has a little better performance if we can carefully assign
locations for each data and distribute all across servers. How-
ever, the hot data changes from time to time, it is difficult to fix
it.

We also evaluate PPC model and the results are shown in Fig-
ure 11. PPC model has good load balance property for all the
traces. Even for Zipf distribution trace which a large amount
of requests concentrated on hot objects, PPC model still can
achieve good load balance. Clearly, this is because of the us-
age of ICS cache on each server to cache these hot objects. FPC
model has similar results and we did not shown here due to the
space limitation.



256MB 512MB 1GB 2GB
PAC model, ICS cache 4.35% 6.47% 9.01% 12.04%
PAC model, PCS cache 13.19% 20.66% 28.97% 34.90%
PPC model, ICS cache 4.35% 6.47% 9.01% 12.04%
PPC model, PCS cache 12.46% 19.47% 28.12% 32.17%

TABLE I
ICS AND PCS CACHE HIT RATES IN PAC AND PPC MODELS
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D. Server Number Effects
To evaluate the effects of different number of servers in a

cluster, in this simulation, we compare the system performance
with different number of servers in a cluster and the results are
shown in Figure 12, 13, 14 and 15. Obviously, the average la-
tency decreases as the number of servers in a cluster increases
since system has larger storage space to cache data. For a 2-
server configuration, system has the lowest performance. How-
ever, it is still outperforms the standard CDN system. The av-
erage latency reduction is between 5.36% and 17.23% with dif-
ferent cache size. As the number of servers within a cluster
increases, the average latency drops dramatically. With a 8-
server configuration, the average reduction is between 37.34%
and 57.64%. Again, PAC and PPC models have the best perfor-
mance. From this experiment, we can conclude that with more
servers introduced, system can achieve higher performance. On
the other hand, the maintenance overhead for FAC and PAC
models also increases significantly. For FPC and PPC models,
this does not happen.
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VI. RELATED WORKS

Many research papers discussed the server placement strat-
egy in distributed networks including CDN [15], [16], [17].
They used graph theories to find out an optimal result. How-
ever, in these systems, CDN is viewed as a static system. These
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approaches can achieve good performance under certain condi-
tions such as relatively stable clients and semi-accurate network
distance measurement results. However, none of these systems
considered the potential advantage of using content server coor-
dination.

Since a lot of CDN networks have already been deployed
on Internet, utilizing resources among different CDNs could
achieve more benefits. Thus, CDN network cooperation be-
comes a hot research topic recently. IETF are now working
on standard protocols for the Content Delivery Internetworking
(CDI) [6], [5]. CDI can be viewed as the next generation edge
and overlay service, it creates the interface for CDNs to utilize
other’s resources. We have different objects. Unlike our pro-
posal, CDI aims to provide cooperation among content servers
in different CDNs. Our proposal is concentrated on exploit-
ing the potential benefits of server coordination within a single
CDN. Compared to CDI, our proposal is much simpler, it does
not need to deal with difficult problems such as create interfaces
among different CDNs. Also, the security problem is much eas-
ier.

Web Caching [18] reduces network traffic and decreases user
perceived latency with a different strategy from CDN. In cur-
rent web caching design, hierarchical architecture [19], [2] is a
very important technique to address scalability problem. How-
ever, in most cases, web proxy servers are belonging to different
ISPs, the administration and coordination among proxy servers
are much more difficult than in CDN environment.



DHT based P2P systems [20], [21], Tapestry [22], Chord [23]
and CAN [24] are scalable solutions for wide area distributed
services. However, most DHT P2P algorithms are still under
research and are not widely deployed. One reason for this is
the decentralized nature of P2P systems. In such systems, the
routing, caching and security problem is much more difficult
than client-server systems. The members of P2P systems are
unstable, they may join/leave suddenly and system performance
is degraded in dynamic systems. In CDN systems, all the con-
tent servers are stable and under the same administration, these
problems are much easier to solve than P2P systems.

New P2P algorithms such as [13], [14] also use topologi-
cal information to boost P2P system routing performance. By
grouping topologically adjacent nodes together and making the
routing hops via the low latency links, P2P routing performance
can be improved. However, these schemes still suffer from prob-
lems such as dynamic join/leave nodes. Also, to discover the
topological information of a newly joined member, these sys-
tems encounter considerable network measurement overhead.

In [25], Kangasharju applies P2P technology to improve
CDN system performance. As [26], their strategy is to utilize
the aggregation of storage space offered by the clients within an
AS. Clearly, this approach also suffers from the unstable client
population problem. While in our approach, the cooperation is
among reliable content servers which can avoid this problem.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new CDN architecture by cre-
ating server clusters in a single content delivery network. Our
architecture can achieve better server load balance and fit for
the future large storage requirement for CDN services. With
the coordination among content servers, client requests are sat-
isfied by different servers within a cluster. FPC and PPC models
can greatly reduce the user perceived latencies in FAC and PAC
models. Also, FPC and PPC models have much less mainte-
nance overhead than FAC and PAC models. Among all the four
service models, PPC is the best choice.

In the future, more work can be done to evaluate the effi-
ciency of the proposed approach. We will use more realistic net-
work models and design new algorithms for ICS and PCS cache
organization and data replacement strategies. We will also try to
transplant the idea on web caching systems. Although applying
this idea on proxy servers may face more difficult problems than
CDN systems since proxy servers are not belonging to the same
company, we believe grouping topologically-closed proxy sev-
ers to form proxy clusters can effectively improve web caching
system performance.
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